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For three stereo-structural models of deoxymyoglobin (Mb) and deoxyhemoglobin (Hb) we 
derive electronic configurations and their mutual spin-orbit coupling. From the temperature dependent 
molecular electric field gradient (EFG) tensor we calculate temperature dependent quadrupole 
splittings, A EQ(T), asymmetry parameters, t/(T), and orientations of the E FG component Vzz(T ) with 
respect to the heine group. Comparing theoretical and experimental data we find a molecular electronic 
structure, which then is used to compute temperature dependent magnetic susceptibilities, )~(T). 
Theoretical and experimental )~(T) data are in reasonable agreement. From the consistency of our 
model calculations with experimental results we conclude that iron in Mb and Hb probably is penta- 
coordinated and considerably out of the heme plane by 0.4-0.8 ~. 

Key words: Myoglobin, deoxygenated, quadrupole splitting Hemoglobin, deoxygenated, 
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1. Introduction 

Since the classical work on "Electric Field Gradient Tensors in Ferrous 
Compounds" by Ingalls [1] several attempts [2-9] have been carried out to 
calculate temperature dependent contributions to the electric field gradient 
tensor (Vpq) and susceptibility tensor (Zvq) in ferrous compounds in order to fit 
temperature dependent experimental quadrupole splittings, A Eo(T), and sus- 
ceptibilities, z(T). All these calculations were based on a crystal field picture which 
included next nearest neighbour effects in a more or less integral form via crystal 
field potentials and isotropic covalency factors acting on iron orbitals. The 
purpose of this contribution is to derive a model for the evaluation of temperature 
dependent Vpq and Xvq contributions including these neighbour effects in a more 

* Supported in part by Stiftung Volkswagenwerk, by Deutsche Forschungsgemeinschaft, by the 
European Molecular Biology Organization, by an award from the Biomedical Sciences Support Grant 
at the University of Utah, and the National Science Foundation. 
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Fig. 1. Stereostructural models for Mb or Hb: (I) a=0.4 ,~, b=2.09/~; (II) a=0.4/~, b=2.34/~ 
(III) a = 0.8/~, b = 2.34/~ 

direct form. We shall apply this model then to the ferrous high-spin compounds 
deoxymyoglobin (Mb) and deoxyhemoglobin (Hb) and compare our theoretical 
results with experiments and findings of other authors. 

1.1. Models for Mb and Hb 

The stereostructural models we use for Mb and Hb are shown in Fig. 1. 
The three different models in Fig. 1 are denoted by I, II, and III, respectively. 
The cartesian coordinates of the heme atoms involved in our molecular orbital 
(MO) calculations are those of Zerner, Gouterman and Kobayashi [10] which are 
based on Koenig's [11] X-ray data on hemin. The histidine, which binds to the 
fifth coordination of the heme iron, is simulated in the present work by a water 
molecule. It is common to all three models that the ferrous iron is pentacoordinated 
and out of the heme plane. This assumption will be discussed with respect to 
recent X-ray data on deoxyhemoglobin [12] at the end of Section 6. 

2. Quadrupole Splitting and Electric Field Gradient Tensor 

From the calculated electronic structures for Models I, II, and III we obtain 
quadrupole splittings 

A EQ = �89 eQ V~(z + �89 u2 (1) 
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The nuclear quadrupole moment Q is taken to be + 0.21 b, consistently with our 
previous work [13-15] and the finding of other authors [16]. The main component 
of the EFG tensor, Vzz, is defined by Ig=l _-__ I~1 >_-Igxxl and results together with 
the asymmetry parameter 

I Vxx - Vyyl (1 a) 
- IVz~l 

from diagonalizing the EFG tensor V,q, which contains valence and lattice 
contributions: 

V,~ = V2~ "l + v lat' ,,q , p , q = x , y , z .  (2) 

The tensor VoVq al has been calculated with the equivalence 

V~ t-- (IIEFGII) e(1 - R) ( r -  3} Lpq. (2a) 

The reduced matrix element (llEFOll} takes the value 2 for d electrons, 
6 for p electrons, and 0 for s electrons. The quantity e represents the (positive !) 

Table 1. Matr ix  elements (~oh, I lp~l~vh) with Fe AO's  having the sequence 13d, yz), 13d, xz), 13d, xy}, 
13d, z2}, 13d, x 2 - f ) ,  14~), 14p, x ) ,  I4p, y) ,  14p, z) .  lzz is obtained from l~z = - l~  - lyy 
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elementary charge, and ( r "  3) is the radial factor resulting from taking the ex- 
pectation value of (3z z -  rZ)/r ~. The ( r -3)3  a are taken from estimates [17] based 
on Clementi's [18] atomic Hartree-Fock wavefunctions: 4.49a.u. for Fe con- 
figuration 3d 7, 5.09 a.u. for 3d 6, and 5.73 a.u. for 3d 5. The actual value of ( r -  3)3 d is 
determined for each model from its calculated Fe 3d orbital occupancy by inter- 
polation between the foregoing values. The Sternheimer shielding correction [19] 
is taken as ( 1 -  R)aa =0.68. Since we find for the three models under study the 
configuration 3d 6'a5 from MO calculations we derive for 

AE~2 = �89 - R)3a(r- 3)3a4 

the value 4.1 mm/sec. For Fe 4p electrons the quantity (1 -R)4p( r -3 )4  p is taken 
to be �89 of the corresponding quantity for the 3d electrons 1-15, 20]. Finally the 
tensor components Lpq result from an appropriate summation over expectation 
values (~Ph'[lpql tPh), where tph, and ~Ph are single-electron atomic orbitals (AO) of 
iron, and the-gingle-electron operators Irq acting on ~Ph are: 

Ip~ = �89 + lq_lp_) - �89 + 1) ,Spq . (3) 

For iron 3d, 4s, and 4p AO's all possible matrix elements (lPh, llp...qq[ ll)h) are sum- 
marized in Table 1. 

3. Spin Orbit Coupling and Temperature Dependent EFG Tensor 

In high-spin ferrous compounds we are concerned with electronic states 
IF, 7, S, 7s) characterized by irreducible representations F and by total spin S = 2. 
All irreducible representations F of the regarded symmetry group C2v are one- 
dimensional and thus y can be omitted. For convenience the spin states IS, Ys) are 
linear combinations of the spin states IS, ms) which transform according to 
irreducible representations of Czv. This can be achieved similar to the construction 
of d-orbitals ]xz), lyz) .... from IL = 2, mL). The fivefold spin degeneracy of each 
state F is lifted by spin-orbit interaction: 

Hs.o. = - 2L .  S,  (4) 

where the coupling constant 2 is commonly related to the free ion value, 
2o = 103 cm-1, by a reduction factor ca: 2 = ~2)~ o. The eigenvectors ]e~) of this 
problem, having energies E,, are certain linear combinations of the base vectors 
IF, S, ~'s): 

le~) = ~ C~-,~lr, S, 7s). (5) 
F,'~S 

The coefficients C~,~ and the corresponding energies E~ result from diagonalizing 
the spin-orbit interaction matrix (U,  S, y~]Hs.o.]F, S, 7s). Since we are interested 
in quadrupole splittings, A EQ, we calculate for each state ]e~) its relevant EFG 
tensor: 

V:q = (e=l Vp.__.aqle,5 �9 (6) 
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In order to evaluate the temperature dependence of the EFG one must average the 
components V;q of the individual substates [G) according to Boltzmann-statistics: 

( V p q ) r = ~ V ~ , q e x p ( - ~ - ) / ~ e x p ( - ~ T - )  . (7) 

Diagonalization of (Vpq)r + Vd~ t leads to V=(T), to t/(r), to the orientation of 
V,~(T), and finally through Eq. (1) to AEe(T ). 

The spin-orbit interaction matrix elements (F', S, ?slgs.o.lF, S, ?s) and the 
EFG tensor elements (F', S, 7sl VJF,  S, 7s) may be simplified by 

(F', S, ?sl 2L ._SIF, S, 7s) = 2(/"1LIF) (S, ~,'slS_[S, 7s), 
(8) 

The evaluation of matrix elements (F'[ QIF), with Q = Vp_j or L__.e p will be discussed 
in the following section. 

4. Spin-Orbit Interaction Matrix and EFG Tensor Derived 
from Many-Electron-MO Wave Functions 

Iterative extended Htickel calculations are carried out for Models I, II, and III 
to find linear combinations of atomic orbitals by methods described in detail 
previously [13, 21], and applied already to CO-myoglobin [22]. From the Hiickel 
one-electron wave functions 4)k=Zhakh~Ph with q~k representing MO's and tpk 
AO's, we build up configurations (CFG) by constructing appropriate Slater- 
determinants ]CFG; kl ..... k,,) - {4)~ .... , q~}. 

Here q~r, is a molecular spin orbital (MSO). If the CFG's describing high-spin 
ferrous states are different from each other by only a single MSO, which may be 
denoted by k-we write ICFG, k) -{q~, , . . . ,q~_~,  q~}. Taking into account 
configuration interaction, CI, we may get new terms ICI, l) which are in general 
linear combinations of ICFG, k)  : 

ICI, I) = ~ mz~lCFO, k ) .  (9) 

With the wavefunctions defined in Eq. (9) we now calculate matrix elements of the 
operator Q, which for our purpose stands for the orbital angular momentum L___~p 
or the EFG tensor operator VF_.._~ q. We obtain 

(CI, l'l Q[CI, 1) = ~ mr~,m~(eFa, k'l QICFG, k) .  (10) 
.~',g 

The matrix elements (CFG, k'I QJCFG, k)  in Eq. (10) are represented by [23] 

m--1  

(CFG, k'I QICFG, k)  = (~b~] Qkb~) + ~ (4'k,] QI(%) (1 ta) 
i = 1  

for k' = k, and 
(CFG, k't Q[CFG, k)  = (4~,] QI4~) ( l ib)  

for k' :;a k. 
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Using the convention k=k,  k i the quantities (~k'] Qi(/)k) a r e  given in terms 
of AO~ by: 

(~)k'[ QICPk~ ---- ~ ak'h'akh(Wh'l QIWh~" (12) 
h',h 

Thus Eq. (10) becomes: 

(CI, l'l QICI, l) = ~, C,'t~h'h~(Wh'l QIWh>, (13) 
h',h 

where the coefficients C(r~)(h,h) are defined by 

C(l,l)(h,h) = (~l, lCh, h ~ C(t'O(h'h ) 
and 

Ch, h ~ ~ akh'akh 
k 

C(rl)(h'h) = ~ mrk'ak'h' ~ mzkakh. 
k' k 

Now, concerning (~h'l Qllt)h~ of Eq. (13) we distinguish three different matrix 
elements, (Wh'lQlwh),(wh'l Qlwh,,), and (~Ph"[ Ql~h'"), where the indices h,h' 
stand for Fe AO's and h", h" for ligand AO's, respectively. With this convention 
we rewrite Eq. (13) into: 

(CI, l'[ QICI, l) = ~ C(l,l)(h,h)(~lJh, I QlWh) 
h',h 

+ ~ (C(t't)(h'h"~----- C(rl)(h"n')) (0?h'[ QIWh") (14) 
h',h" 

-[- ~ C(l'l)(h"h'")(Wh'l QIlph'"> . 
h",h"' 

The +-sign in Eq. (14) corresponds to the case where Q represents a real operator 
(EFG), the --sign to the case where Q represents a complex operator (orbital 
momentum). The matrix elements (Ph'l QIWh") representing cross-terms between 
iron AO's and ligand AO's can be transformed by introducing a completeness 
relation of orthogonal orbitals I ~ )  which contain the iron AO's I~h,): 

(~,1 QI~, , )  = Y~ (~,1 Q I ~ )  ( ~ 1 ~ , , )  �9 (is) 

If Q does not lead out of the subspace of I~h'), the summation can be restricted 
to iron orbitals, and we obtain: 

<Wh,I QIwn,,> --- ~ (Wh'l QIWh> Shh", (16) 
h 

where Shh,, stands for the overlap integrals between iron AO's Vh and ligand 
AO's Vh" (cf. "Note Added in Proof'), 

With the use of Eqs. (14) and (16) we are able to calculate matrix elements for 
the spin-orbit interaction and for the EFG tensor. For the evaluation of matrix 
elements (Ins.o.l> from Eq. (14) we use the --sign and neglect the pure ligand 
contributions (ogh,,I Hs.o. I'll)h,,, ). 

In the case of the EFG we derive Vpq by using the +-sign in Eq. (14), and we 
distinguish two parts, 1. the so-called valence contribution 
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with (~Ph, I v,l. V~,q I~Ph) being obtained from Eqs. (2a) and (3), and 2. the so-called 
lattice contribution 

<I'1 lat __ E. I/>- ~ c(,,,)(,,,,,,,)(~,,,I V~l~h,,,>. (18) 
h " , h ' "  

Assuming the tigand charges q. to be localized at lattice points (Rx., Ry., R=.) 
we can approximate V 1at of Eq. (18) by �9 p q  

( l l  lat E q  I l> ---- (1 Yoo) ~ qa(3RpaRqa 2 5 - - bpqR.)/R. ,  (19) 
a 

where q. and (Rx., Ry., R=.) are the charge and the cartesian coordinates of the 
a 'h ligand, and ( i -  %0) represents the Sternheimer antishielding [19] of iron 
core electrons due to ligand charges. 

From our MO calculations we get the information concerning the coefficients 
C,,o(h,h) and C,,o(h,h,, ), the overlaps Shh,,  , and the atomic charges %. Thus the 
problem of calculating A EQ(T ), tl(T), and the orientation of the EFG component 
V=_~ is solved straightforward using the formalism described in the foregoing 
sections, and identifying states I CI, l) and iF, S, 7s) through the transformation 
properties of ]CI, 1). 

5. Results 

Carrying Out calculations for the Models I, II, and III we make approximations 
which have to be discussed before presenting the computational results. We 
restrict spin-orbit interaction to states which we find to be lowest in energy by 
configuration interaction (CI) calculations 1. According to C2~ symmetry of the 
three models presently under study these states (see Fig. 2) are characterized by 
irreducible representations 5A2, 5B1, and 5B 2 [-24]. To study the effect of an 
energetically low lying low-spin term on AEo(T  ) and q(T) we add the state 1A 1 
(Fig. 2) to our investigation. Since the four states have different irreducible re- 
presentations the coefficient matrix ml~ of Eq. (9) will remain diagonal independent 
of the energy separations of the four states. Thus we get the simple relation 

. _ ~  _ ~  _~5A2 IAI q%6 = 0.45841 3zZ_r2> _ 0.7977 [ xZ yZ>, fig" 

-~.------ -~----- @ qb,s : 0.7247 I 3zZ- #> - 0.~.178 I xZ- yZ> .rig. 

@ " ~  - ' ~ - -  - ' ~  ~b, = 0.9g/,tmyz > .ligond con|ributions 

- - ~  -~ - - -  --~--- " - ~  ~b~, = 0.9223,xy > + 

- - ~  - ~ ' -  " ~  - - ~  d~62 = 0.917L, I . . . .  

doubly occupied MO s~cltes (1)i i = I - 61 

Fig. 2. Many-electron states which are used to calculate AEQ(T), rl(T), and x(T). The coefficients of 
r represent the situation for Model (I) of Fig. 1 

x The configuration interaction procedure is described in Ref. [t 3]. 



96 A. Trautwein et aL 

aE,~ L 

2.21 ' 

2., "-2' 
2.o t 

 8t " - - - I -  

0 50 100 150 200 T(K 

o) 

~E~ 

2,3- 

2.2- 

2.1-  

2,0- 

1 .9-  

1 . 8 -  

1,7 - 

i 

' .  N N \  

"" \ d  

5'0 100 I ; 0  200 TIKI 

b) 

Fig. 3 a and b. Temperature dependent quadrupole splittings for Model (III). ,l = 90 cm-  ~. Experimental 
A Ee(T ) data for frozen Mb solution (Ref. [26]) are indicated by closed circles, for a Mb single crystal 
(Ref. [27]) by "X" and error bars, and for frozen Hb (rat) solution (Refs. [2, 3]) by open circles and error 
bars. Energies for SB2, SB~, 5A2, and tAt in c m - t  corresponding to AEa(T) curves are: 

a a 0, 150, 100, 50 
b 0, 150, 100, 10000 
c 0, 200, 100, 50 
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Fig. 5a and b. Temperature dependent quadrupole splittings for Model (III). 2 = 90 cm -1. Experi- 
mental AEa(T) data are defined in Fig. 3. Energies for 5B z, 5B~, SA z, and 1A~ in c m - t  corresponding 
to AEQ(T) curves are: 

a a 100, 300, 0, 50 
b 100, 300, 0, 10000 
c 100, 500, 0, 50 
d 100, 500, 0, 10000 

b a 200, 800, 0, 50 
b 200, 800, 0, 10000 
c 300, 300, O, 50 
d 300, 300, O, 10000 
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Fig. 6 a and b. Temperature dependent quadrupole splittings for Model (I). 2 = 90 cm-  1. Experimental 
A EQ(T) data are defined in Fig. 3. Energies for SB2, 581, 5Az, and 1A 1 in cm-  1 corresponding to A Ea(T ) 
curves are: 

a a 0, 150, 150, 50 
b 0, 150, 150, 10000 
c 0, 200, 150, 50 
d 0, 200, 150, 10000 
e 0, 300, 150, 50 
f 0, 300, 150, 10000 

b a 0, 100, 300, 50 
b 0, 100, 300, 10000 
c O, 150, 300, 50 
d 0, 150, 300, 10000 
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Figl 7a and b. Temperature dependent quadrupole splittings for Model (II).),=90 cm-1. Experi- 
mental AEQ(T) data are defined in Fig. 3. Energies for SB2, SB1, SA2, and 1A 1 in cm-1 corresponding 
to AEQ('I} curves are: 

a a O, 300, 400, 50 
b O, 300, 400, 10000 
c O, 300, 600, 50 
d O, 300, 600, 10000 
e O, 300, 1000, 50 
f O, 300, 1000, 10000 

b a 0, 400, 200, 50 
b O, 400, 200, 10000 
c 0, 400, 400, 50 
d 0, 400, 400, 10000 
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Fig. 8 a and b. Temperature dependent quadrupole splittings for Model (I). 2 = 75 cm- 1. Experimental 
AEe(T ) data are defined in Fig. 3. Energies for SB2, 5Bt, 5A2, and 1A 1 in cm- 1 corresponding to AEQ(T) 
curves are: 

a a 0, 150, 150, 10000 
b 0, 150, 175, 10000 
c 0, 150, 200, 10000 

b a 0, 200, 100, 10000 
b O, 200,  150, 10000 

[CI, l )  = ICFG, k )  ins tead  of  Eq. (9). This  a l l ows  us to vary the m u t u a l  energy  
separat ions  b e t w e e n  5,4 2, SB 1, SB 2, and  tA t w i t h o u t  c h a n g i n g  the  states  tCI, l ) .  

For  each of  the  three m o d e l s  we  then carry out  c a l c u l a t i o n s  a long  the l ines  
descr ibed a b o v e  to get AEQ(T), q(T), sign V~z , and  the or ienta t ion  of  V~z relat ive 
to the  h e i n e - c o o r d i n a t e  sys t em of  Fig.  1. S o m e  of  the  resul t ing  A Ea(T)-curves for 
var ious  energies  E(SA2), E(SBO, E(SBz),  and  E ( 1 A 0  are s h o w n  in Figs.  3 - 7  for 
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Fig. 9a  and b. Temperature dependent quadrupole splittings for Model (III). ,~= 75 cm-~.  Experi- 
mental A EQ(T) data are defined in Fig. 3. Energies for 5Bz, 5B 1, SA 2, and 1A~ in c m -  ~ corresponding 
to AEQ(T) curves are: 

a a 0, 120, 160, 10000 
b 0, 120, 180, 10000 

b a 0, 180, 100, 10000 
b 0, 180, 120, 10000 

Table 2. Energies of spin quintet states (in c m -  1), temperature dependent quadrupole splittings (in 
mm/sec), and asymmetry parameters. The angles c~ and/~ (in degrees) defining the orientation of V~ 
with respect to the heme coordinate system of Fig. 1 are for all Curves 8 a and 9 a and for temperatures 

4.2 _< T < 200 given by ~ = 90,/~ = 90 

Figure Curve 

Energies of Calculated parameters for temperatures T (in K) 

5B 2 5B 1 5A 2 4.2 50 75 100 150 200 

8a  a 0 150 150 AEQ 2.157 2.118 2.139 2.101 1.934 1.748 
r/ 0 . 4 6 1  0.436 0.420 0.419 0,447 0.494 

b 0 150 175 AEQ 2.228 2.211 2.235 2.196 2.019 1,820 
r/ 0.355 0.341 0.327 0.325 0.341 0.377 

c 0 150 200 AE a 2.299 2.303 2.330 2.290 2.103 1.891 
q 0.249 0,246 0.236 0.230 0.235 0.261 

9a  a 0 120 160 AEQ 2,242 2.181 2,204 2.175 2,025 1.850 
r/ 0.369 0,326 0.309 0.307 0,320 0,336 

b 0 120 180 AEQ 2,313 2.269 2.294 2.265 2,112 1.931 
t/ 0.421 0.371 0.352 0.352 0.372 0.394 

spin-orbit coupling constant 2 = 90 cm-1, and in Figs. 8 and 9 for 2 = 75 cm-1. 
The +-  or - -sign at each curve indicates the calculated sign of the EFG component 
V=. The energies, asymmetry parameters, and orientations of V~z corresponding to 
AEa(T)-curves of Figs. 8a and 9a are tabulated in Table 2. Experimental AEa(T) 
data for frozen Mb solution [25] are indicated by closed circles, for a Mb single 
crystal [26] by "x" and error bars, and for frozen Hb (rat) solution I-2, 3] by open 
circles and error bars; the sign of V~ z was experimentally determined to be positive 
from Mb single crystal MSssbauer measurements [26]. 
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6. Discussion 

Comparing our theoretical AEQ(T) curves with the experimental AEQ(T) 
data from Mb and Hb we find reasonable coincidence of computational and 
experimental results only for the case with 5B z being groundstate (Fig. 8a). 
From configuration interaction calculations for Model II taking into account 
configurations 5B2, 5B1, and 5A 2 we find SB 2 to be groundstate too. From in- 
spection of Table 2 it is obvious that the A EQ(T) curve which fits the experimental 
AEQ(T) data corresponds to an EFG component Vzz being oriented along the 
heine axis y. This result agrees well with our recent findings from M/3ssbauer 
investigation of Mb single crystals at 77 K [26]. There we found an angle of 
c~ = 40 ~ _ 8 ~ between Vzz and the crystallographic b-axis of the Mb single crystal, 
indicating that V~ possibly is oriented along one of the two heine axes y or z. 

The asymmetry parameters t/(T) (from Table 2) which are related with the 
AEa(T ) fit Curve b of Fig. 8a also agree with our Mb single crystal M6ssbauer 
results. In Ref. [27] the angle ~ = 40~ 8 ~ was derived assuming t/ to be zero. 
A most recent computational analysis of our former Mb single crystal M6ssbauer 
data by Maeda et al. (to be published), however, indicate that ~ = 40~ 8 ~ is 
consistent also with an t/-parameter in the range 0 _-< t /= 0.3. 

The energy separation E(1A1)-E(SB2) which is varied between 50 and 
10000 cm -~ is sensitive only to the slope of the theoretical AEQ(T) curves for 
temperatures T >  50 K; and, further, AEQ(T) curves up to T= 200 K are identical 
for E(1A1) - E(SB2) = 300 cm-  1 and E(1A1) - E(SB~_) = 10000 cm-  1. Though we 
find AEQ(T) curves corresponding to E(1A1)-E(SB2)~ 100 cm -1 which fit the 
experimental AEQ(T) data we give arguments why an energy separation of 
E(~A1) E(SB2) ~> 300 cm-  1 seems to be more realistic. In addition to the static 
molecular structure of Fig. 1 we have to consider lattice vibrations which have 
the effect that the potential V at the iron contains higher terms than the static 
ligand field potential V (~ [27] : 

V = V (~ + V(1)e + V(2)~ 2 + . . . .  (20) 

The quantity e in Eq. (20) represents an isotropic average of the strain tensor, 
and V (~), V(2),... describe orbital-lattice interactions. The transition probability 
of a direct process between states [a) and [b), given by 

2n 
Wa dir-  [(a, N - II V(1)g[b, N)[ 2 0(E) 

b -- h 
(21) 

2n 
- I(al V(1)lb)l 2 I(N - 11 ~IN)I 2 0(E), 

h 

with N = occupation number of phonons and o(E)= phonon density of final 
states, is zero if la) stands for a spin quintet and Ib) for a spin singlet, because V (1) 
is spin-independent and spin-orbit coupling mixes high-spin and low-spin states 
via spin-triplets only, thus (a[ V(~)[b) = O. In the real case the transition probability 
W,b might be slightly different from zero since the state la) ([b)) might be a linear 
combination of a spin quintet (spin singlct) state and a small contribution of its 
counterpart due to spin-spin interaction. FV, b being very small, however, means 
that the spin-lattice relaxation between la) and [b) is very slow. With the spin- 
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lattice relaxation time becoming larger than the precession time of the Fe 57 
nucleus (of order 10 - 7  sec)  during 7-absorption and re-emission one would see 
two separated M~Sssbauer spectra, one corresponding to the spin quintet [a) and 
one to the spin singlet Ib), and the thermal average for evaluating A EQ(T) should 
be only over the high-spin states. There exist several examples for such high-spin 
low-spin transition in the literature [28] for compounds containing ferrous iron. 
Believing in slow spin-lattice relaxation between high-spin and low-spin states 
in deoxygenated myoglobin and hemoglobin one might have the idea to explain 
M6ssbauer spectra of deoxygenated hemoglobins, containing small-intensity 
lines (see Fig. 4 of Ref. [29]) by thermal mixtures of high-spin and low-spin 
quadrupole splittings. The AEQ value associated with the 1A 1 state of about 
1.3 mm/sec would be just in agreement with the "impurity" line positions, 
however, the intensity ratio, R, of low-spin to high-spin lines would be temperature 
dependent, in contrast to the experimental results for example of deoxygenated 
hemoglobin single chains [30], which sometimes, under certain preparational 
conditions, also show these "impurity" lines. Assuming the IA 1 state to ly in 
energy above the spin quintet groundstate by 50 cm-1 (300 cm-1) the intensity 
ratio R would be unmeasurably small at T--4.2 K; at an elevated temperature 
of T =  200 K the ratio R is estimated from energies E~ to be about 8 % (2%). 
For these reasons we believe the energy separation E(1AI) - E(SBz) to be at least 
300 cm-1; thus the spin singlet 1A 1 does not influence at all our AEo(T)-curves. 

It remains to compare our present results with ligand field interpretations of 
temperature dependent quadrupole splittings and susceptibilities of deoxygenated 
heme compounds by Eicher and Trautwein [2, 3] and by Groves et al. [6], and 
with susceptibility investigations o[ Mb powder samples 2 by Nakano et al. [31]. 
The ligand field calculations by Eicher and Trautwein [-2, 3] were based due to 
symmetry considerations of the heme group on the assumption that V= is oriented 
perpendicular to the heme plane; thus the 5A 2 term 2 (using a coordinate system 
as defined by Fig. 1) was taken as ground state. This situation, however, was ruled 
out by the present calculations and by our former Mb single crystal experiments 
[26]. Most recent ligand field calculations by Groves et al. [-6], basing on the 
theory described by Eicher et al. [2, 3] and taking V= to be oriented in the heme 
plane, show that experimental AEo(77 K <  T<200  K) and z(T) data are con- 
sistent with energy separations of Fe 3d terms of E(dxy ) -  E(dxz)= 46 c m - 1  
E(dy~) - E ( d J  = 692 cm- 1, and E(1A1) - E(d~z ) = 333 cm- 1. In these calculations 
isotropic covalency factors and fast spin-lattice relaxation between high-spin 
and low-spin states have been assumed, in contrast to our present arguments; 
further, the A EQ(T)-fit was limited to the temperature range 77 K < T <  200 K 
only.~ Keeping in mind that due to these restrictions the energy sequence of states 
5B 1, 5B 2, 5A 2, and 1A1, as determined by Groves et al. [6], have to be different 
from ours at least slightly, we notice that their [6] and our present results are 
mainly consistent: (I) V= is oriented parallel to the heme plane, (II) V~z>0, 
(III) r/~ 0.5, (IV) the spin quintet 5B z is ground state in Mb and Hb, (V) E(1AO 
- -  E ( S B 2 )  ~> 300 c m -  1, (VI) E(SB1) - E ( S B 2 )  ~< 150  cm- 1, and (VII) E(3Ey)  - -  E ( S B 2 )  

> 1000 cm- 1 

2 In the investigation in Refs. [-2] and [-3] the symmetry was assumed to be C4v. The 5B 2 term there 
corresponds to the irreducible representation 5A z of the symmetry group C2v in our case (Fig. 1). 
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To assess further the reliability of our results, which were obtained by fitting 
experimental quadrupole splittings, we use the energy terms E~ corresponding to 
Curve b in Fig. 8a and compute temperature dependent magnetic susceptibilities 
z(T). The ;(-tensor Zpq, with p, q = x, y, z, is defined by 

aMp  q=o zP'~= aHq (22) 

M v represents the magnetization per mole. According to Eq. (22) we may write 

M v = • zvqHq " (22a) 
q 

and the tensor elements Zpq we derive from 

Zpq = I ~2 A ~ <e,[ L_...~v + 2Sple~,> <e~,[ L_~q + 2Sq[e,> 

~'" (23) 
e x p ( -  E~,/kT) - e x p ( -  EJkT) l o 

E~, - E~ j" 

The spin states le~> already have been defined by Eq. (5); and the E, are their 
corresponding energies. Symbol A stands for the Avogadro number. For cases 
of degeneracy we simply take 

lim exp ( -  E~, /kr)-  e x p ( -  E J k r )  = exp(-- EJkT) 
~-~ E~ E~, - E~ k T 

The powder susceptibility z(T) results from x(T)= l~_,p)~pp, with p = x, y, z. The 
solid z(T) curve in Fig. 10 corresponds to the AEQ(T) fit Curve b in Fig. 8a. 
Closed circles in Fig. 10 are experimental points taken from the susceptibility 
investigation of Mb by Nakano et al. [32]. The z(T) curves corresponding to 
AEa(T ) Curve c in Fig. 8a and to AEQ(T) Curves a and b in Fig. 9a are nearly 
identical to the solid line of Fig. 10; the broken line, however, represents the 
situation that spin triplet states ly close to the spin quintet ground state with energy 
separations E(3En) - E(SB2) -- 200 cm- 1 and E(aE~) - E(SB2) = 300 cm- t. Thus, 
by comparing solid line, broken line and experimental points in Fig. 10, we 

0.5 

0.4 

0.3 
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0.1 

0 1;0 2;0 T(K) 0 tO0 

Fig. 10. Temperature dependent susceptibilities. Solid line corresponds to energies as specified for 
AEe!T ) Curve b of Fig. 8a. Broken line corresponds to energetically low lying spin triplet states (see 

text). Experimental points are taken from [32] 
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conclude that the energy sequence 5B2, 5B1, 5A 2 give a more realistic picture for 
deoxygenated heme compounds than the formerly derived ligand field result 
[2, 3] with an energy sequence of 5.42, 3E. 

Summarizing our results we note that the present MO interpretation of 
experimental M6ssbauer and susceptibility data of deoxygenated heine proteins 
is approximative in the sense that in the three models under study (Fig. 1) we 
neglect the protein part of the molecule, several peripheral side chains and the 
probable non-planarity of the heme group, that we represent the histidine group 
by a water molecule, and further, that we assume all interatomic distances to 
remain constant within the whole temperature range of 4.2 K_< T_< 200 K; 
moreover, the MO-procedure itself is approximative to the extend described in 
Refs. [13] and [21]. These simplifications, however, are believed to be secondary 
for the present attempt to derive a gross description of the structural situation 
of the heme iron in deoxygenated heme compounds. From the present work we 
therefore conclude that the MO interpretation of experimental M/fssbauer and 
susceptibility data consistently agree with the assumption that the heme iron in Mb 
and Hb is pentacoordinated and significantly out of "plane" (by > 0.4 A; see 
Fig. 1). The interpretation of recent X-ray data of Mb [32] and of Hb [ 12] support 
at least part of our findings, namely that the heme iron in Mb, Hb is penta- 
coordinated. 
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Note Added in Prooj? 

Equation (16) can be applied for Q = Ip. If Q is the operator for the EFG, Eq. (16) is only approxi- 
matively valid, since the contributions from nondiagonal elements in l (for example contributions 
<3dl (VI,, ~) 14s)) have been neglected. 


